Thermal games: frequency-dependent models of thermal adaptation

نویسندگان

  • William A. Mitchell
  • Michael J. Angilletta
چکیده

1. Most models of thermal adaptation ignore biotic interactions, and those that do consider biotic interactions assume that competitors or predators cannot respond to adaptation by the focal species. Nevertheless, real biotic interactions involve responsive entities, which can be more accurately modelled using evolutionary game theory. 2. We present a two-part analysis of a thermal game between prey and predators. First, we model a game in which prey choose patches on the basis of operative temperature and predation risk, whereas predators choose patches on the basis of prey density. Second, we consider how this thermal game influences the evolution of the prey’s thermal physiology. 3. The solution of the thermal game is an evolutionarily stable Nash equilibrium in which prey divide their time equally among a range of thermal patches while predators bias their hunting efforts toward warmer patches, even though they derive no thermoregulatory benefit from doing so. Furthermore, the optimal range of temperatures selected by prey and predators increases as the lethality of predators increases. 4. This thermal game potentially influences the evolution of the prey’s thermal physiology. When predators are less lethal, prey should thermoregulate over a narrower range of temperatures, resulting in selection for thermal specialization of physiological performance. But when predators are very lethal, prey should thermoregulate over a broad range of temperatures; in this case, prey pay no fitness cost for being thermal generalists. 5. Evolutionary game theory provides a powerful tool for generating hypotheses about the effects of biotic interactions on evolution in heterogeneous environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method

Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses...

متن کامل

Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the b...

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...

متن کامل

Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli Beams with Temperature-dependent Properties

Thermal buckling behavior of functionally graded Euler-Bernoulli beams in thermal conditions is investigated analytically. The beam with material and thermal properties dependent on the temperature and position is considered. Based on the transformed-section method, the functionally graded beam is considered as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009